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Abstract

We show how to create an arbitrary field state in a cavity by sending appropriately

prepared two-level atoms through the cavity and subsequently detecting them in their ground
state.

1 Introduction

Two typical questions in quantum mechanics are (i) how does a given initial quantum state evolve

in time? (ii) what are the properties of a given quantum state? Usually, the question of how

to prepare these states is not answered. One notable exception is the operationM approach by

W. E. Lamb [1]. He prepares an arbitrary quantum state of a particle by "catching" it in an

appropriate potential constructed out of the corresponding wave function. In quantum optics,

however, quantum states of the radiation field are of central interest. Here this scheme does not

work, since there is only a limited variety of Hamiltonians describing the interaction between

matter and the radiation field. During the last few years, the preparation of nonclassical states

of the radiation field has attracted a lot of interest. However, the investigations were limited to

certain classes of quantum states. In particular, the generation of squeezed states [2], number

states[3, 4] and SchrSdinger cat states [4, 5] was discussed.

So far two approaches have been used: (i) Find an appropriate Hamiltonian which transforms

via unitary time evolution a given (simple) initial state to the desired final state. (ii) Make a

measurement on one of two entangled quantum systems and obtain the state of the other system

by the corresponding state reduction. Although in principle we can always construct the necessary

Hamiltonians and entanglements, the variety of states which we can obtain in this way is limited

since the Hamiltonians and entanglements based on physical interactions are limited by nature.

Nevertheless, we give a recipe how to construct an arbitrary quantum state of the radiation field

starting from the vacuum state by repeatedly using a simple Hamiltonian and subsequent state

reduction [6].

2 The Ingredients for Quantum State Engineering

The ingredients for our method of creating an arbitrary quantum state are two-level atoms and

a cavity for the electromagnetic field. The atoms interact with a resonant mode of the cavity via
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the Jaynes-Cummings Hamiltonian. We start with a cavity field which is initially in the vacuum

state and consecutively inject atoms in such a way that there is at most one atom in the cavity at

a time. Before an atom enters the cavity we prepare it in a specific superposition of the excited

state ]a) and the ground state ]b). This superposition has to be chosen appropriately [7] in order

to drive the state of the cavity field towards the desired state. A measurement of the internal

state of each atom after it has passed through the cavity leaves the quantum field in a pure state.

Let us consider one step of this process, that is, the interaction of the k-th atom with the

cavity field. Before we inject the k-th atom the cavity field is in a state

I_(_-'1>= _ _'_-'ln>. (1)
n

The k-th atom enters the cavity in the superposition state la) + ieklb) controlled by the complex

number ek [8]. During its flight through the cavity the atom interacts with the cavity field

according to the Jaynes-Cummings Hamiltonian. After it has left the cavity, the state of the

combined atom-field system reads

I¢(_1>= _(k-,) [C(k)ln ' a> -- iS(k)tn + 1, b)
n

+iekC_k2,1n,b) + ekS_k211n- 1,a>] . (2)

Here C (k) = cos(gTkvfn + 1) and S (k) = sin(grkx/n + 1), where rk is the interaction time of the

k-th atom with the field and g is the atom-field coupling constant.

Obviously the state (2) is an entangled state. In order to obtain a pure field state we make

a measurement on the k-th atom and detect it either in the excited state or in the ground state.

If we detect the atom in the excited state our method cannot create the desired field state. We

therefore have to go back to the vacuum state and start the procedure again. However, if we find

the k-th atom in the ground state we continue the process. In this case the new field state [8]

reads

l_(k))= _ _k)ln ) . (3)
n

The coefficients for the new state, _(k), and the coefficients for the old state, _(k-1), are related

via the recurrence relation

_(n k) ,"T(k) (k-l) __ g" c(k) ,._(k-1) (4)-'_ '-_n--l_n--I _ n--l'Vn

which follows from Eq. (2).

3 The Art of Quantum State Engineering

Each atom which has passed through the cavity and has been detected in the ground state increases

the number of Fock states building up the cavity field state by one. Therefore, after N atoms

have passed through the cavity, the field state which initially was the vacuum state I_(°)), is a

superposition of the N+I number states 10), ]1), ..., IN). But how do we get a desired combination

N

IWd>= _ d.ln) ?
n=O

(5)
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The key idea of our method is to find a combination

N-1

(N-'))=
n=O

(6)

of N number states 10), 11), ..., IN) which yields the field state ]_a) after the N-th atom prepared

in an appropriate internal state Ia) + ieN[b) has passed through the cavity and has been detected

in the ground state. From Eq. (4) we find for the N + 1 unknowns, that is, the N coefficients

cp_N-x) and the parameter eN, the following set of N + 1 equations:

S (N) _:_(NN_ 1)dN = N-1

:

d,,, S(N), {N-X) /..._(N) (p(nN-1)= n-1 'f"n-X -- EN "-"n-1

do = (7)

We express the unknown values _(nN-l) in terms of the known values d,_, starting with the first

equation of the set (7), and obtain

c y>1 <z.+,_ _7.__1= s( N)J
I_=l L lu=n _'nTl,,--1

(8)

In addition we have to satisfy the last equation of the set (7). We therefore substitute the

coefficients T(N-1) into the last equation of the set (7) and obtain

do + __, s(uN)j _ ¢_v = 0 (9)
t,=l L#=O '.--'v- 1

as the characteristic equation for CN.

We solve the characteristic equation numerically and choose one value g N from the N roots

of Eq. (9). Equation (8) immediately gives us the corresponding coefficients _,_N-X) of the state

I_(N-1)). We take ]_,(N-1)) as a new desired state which we have to obtain by sending N - 1

atoms through the cavity. For the state I_ (N-l)) we do the same calculations as for the state [Ve)

and obtain the parameter eN-1 and state I_ (N-2)) with N - 1 coefficients _0_N-2). We repeat the

calculations until we end up with the vacuum state. A string of complex numbers el, ¢2, ..., eN

defines the internal states of a sequence of N atoms we have to inject into the cavity in order to

obtain the desired state ]_bd) from the vacuum state.

We illustrate this method by creating a superposition of the number states 12) and [7),

1 (12)+ 17))I¢'<d= (10)

In Table I we give the values cx, ¢2, ..., ¢7 calculated for identical interaction parameters grk = rr/5.

In order to give an impression about the individual steps of the evolution of the field state from the
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TABLE I. Internal state [a) + ilekt e;aklb) of the k-th atom needed to obtain the

state (12) + [7))/vrg, Eq. (10), for a fixed interaction parameter gr = re�5. The right

column gives the probability p(k), Eq. (14), to find the k-th atom in state Ib) after its

interaction with the cavity field provided all earlier atoms have been detected in the

state Ib). In this case the probability 79r, Eq. (16), to find all atoms in the ground

state is Pr = eb {')" p_2). ,, F_7)= 0.00801.

k Pff)

1 0.6066 0.2105 0.5215

2 0.7482 0.9820 0.4284

3 0.9320 -0.5961 0.4379

4 1.2036 -0.1964 0.5546

5 1.6243 0.6000 0.4294

6 0.0000 0.0000 0.4590

7 0.0000 0.0000 0.7495

vacuum state to the desired state, Eq. (10), we plot in Figure 1 the Q-function for the field state

IT (k)) after the k-th atom has passed through the cavity and has been detected in the ground
state.

4 Probabilities

But what is the probability to create the state, that is, what is the probability T'N to find all atoms

in the ground state after they have passed through the cavity? So far we have used unnormalized

states for the atoms and the field because it was convenient for calculating _k and qa_k). However,

when we need probabilities we have to use normalized field states

k

I¢(k))= ) (11)
n----O

and atomic field states (la) + i_klb)) IV/1 + i_l _.

For the coefficients _b(k) we obtain equations similar to Eqs. (7) which read

¢(k) - Ark S (k) .,(k-l)k-I _Vk-1

Cn {k) -" Xk [s_k-.} 1 "fin-iJ'(k-1)l

:

f,(k) k-_)]- <,v:_,

(12)

184



k=0 k=4

-2
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2

Re(a ) Im(c_)

FIG. 1. Q-function Q(c_) = for the field state IqD(k)) after the k-tia

atom has interacted with the field and has been detected in the ground state. Tile

parameters for the internal states of the incoming atoms are given in Table I.
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Here the normalization constant
1

A/'k = (13)

_/p(k) (1 + I kl

consists of two parts: The factor 1/_/1 + I_k[2 which takes into account the normalization of the

internal state of the k-th atom, and the factor 1/_/P (k) which is due to the normalization of the

field state after the state reduction. Here

I¢
p(k) = n_=O _-'n-l Wn-1

1 + I kl
(14)

is the probability to find the k-th atom in the ground state. From the first equation of (12) follows

N

¢(NN)= I'I (A/kS(k),)¢(0). (15)
k=l

Since we start from the vacuum state we have 0(0) = 1. Moreover, we note that for a normalized

desired state we have ¢(N) = d,. We substitute Ark from Eq. (13) into nq.(15) and obtain for the

probability "PN to find all N atoms in the ground state

7_N= _-ip(k ) 1 l_i tS (k)_2
k=, -- ]dN[ 2 k=l ['i 7____2].k-l,

(16)

The probability T)N depends on the choice of roots of the characteristic equation, Eq. (9),

and the interaction times rk. Can we use these "degrees of freedom" to optimize the probability

PN? To get an idea of the possibilities of this optimization let us consider the simplest case

of identical interaction times vk = r for the example of a superposition of the number states

12) and 17), Eq. (10). The dependence of the probability "Pr on the interaction parameter gr is

shown in Figure 2. For this curve we have chosen for each atom the ek with the smallest absolute

value. We note that T'r increases for increasing interaction parameter gr and reaches its maximum

7='7 _. 0.00944 at gr _ 0.2219r and then decreases. Moreover, trapping states, that is, interaction

parameters gr with sin (grv/_) = 0 (n = 1,2,..., 7), manifest themselves in vanishing probabilities

Pr as apparent from Eq. (16). As a general rule the maximum value for the probability occurs for

interaction parameters smaller than those corresponding to trapping states.

In the next step of the optimization we allow each atom to have its individual interaction time

rk with the cavity field. In Table II we have chosen rk such that the probability P7 to find all

seven atoms in the ground state has a maximum. Using this strategy we increase Pr up to the

value Pr _ 0.02630.
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FIG. 2. Probability 7'7 to find all seven atoms in the ground state as a function

of the interaction parameter gr for the superposition state, Eq. (10). Here we have

chosen ek with the smallest absolute value. Note the occurrence of trapping states

where, according to Eq. (16), the probability P7 vanishes.

TABLE II. Internal state la) + ilekl dOklb) of the k-th atom needed to obtain the

state (12)+ [7})/v_, Eq. (10). Here we have optimized the interaction parameters gr_

as to maximize the probability Pr, Eq. (16), to find all atoms in the ground state. The

right column gives the probability Pb(k), Eq. (14), to find the k-th atom in state Ib)
after its interaction with the cavity field provided all earlier atoms have been detected

in the state lb). In this case we have Pr = 0.02630.

k 16kl

1 0.7157 -0.5870 0.5000 1.0000

2 1.0031 -0.2310 0.3078 0.8041

3 1.1683 -0.9769 0.2479 0.5559

4 1.1891 0.1949 0.2043 0.3311

5 1.2350 0.6000 0.1808 0.3527

6 0.0000 0.0000 0.2566 0.6297

7 0.0000 0.0000 0.2301 0.8000
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5 Conclusion

In conclusion we emphasize that we can construct any superposition of the first N + 1 number

states from the vacuum state by injecting N appropriately prepared atoms into a cavity and

detecting all of them in the ground state after they have interacted with the field. Furthermore,

we note that the Jaynes-Cummings Hamiltonian is not crucial for this method. Similar interactions

between field and atom can also be used provided that they allow for energy exchange between

field and atoms.
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